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Scope of Contract NAS2-4151

Work under Contract NAS2-4151 started on February 1, 1967
with the purpose "to define and study one or more. probabilistic
models for the computation. of 1ifting rotor random dynamic

1oads and vibrations, which are sultable for the interpretation
lof wind tunnel and flight meaéuréments of rotor loads and
vibrations using powef spectfélldehsity measuring'techniques.“
This report summarizes the résulbs ébtained through August, 1967
when eight man-months of'WOfk héd beén expended Work under
subject contract, which extends through July, 1968 to a. total

of twenty one man—months, 15 being continued.



Concepts for a Theoretlcal and Experimental

Study of Lifting Rotor Random Loads

'“'v and Vibrations ‘

by Kurt H. Hohenemser
| ‘and Gopal H. Gaonkar
Washington University, St. Louls, Missouri

‘Abstrect:

After briefly discussing a number of 1ifting rotor conditions
with random inputs, the present state of random process
theory, applicable to lifting rotor problems iS sketched.
Possible theories of random blade flapping and random blade
flap-bending are . outlined and their 1imitations discussed.

A plan for preliminary experiments tor study random flapping
motions of a see-saw rotor 1s deve10ped
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Notation for mainrrqport
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Expected value of sample X
Expected value of sample function f(x)

Values of sample functlon x(t) at
times t1-and t2 respectively

_ . First and second order probability
n densitles ‘

Time -
Time‘difference
Average time

Cross-correlatlon functlon between
sample time functions x(ty) and y(%)

Frequency

Fregquency interval

' Fourler transform of sample
function x(t)

Cross correlation: function
'between sample frequency functions

X (f ) and. Y(fe), also ealled power

spectral density

Normalized cross-correlation function
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g, = JE[(X- ﬂx)'2] 3 Standard deviation of probability
= . ‘density pl(x)
Q; Expected value of positive

crossings per unit time of the level a

h{T) - -Upit impulse response funection
H(T) . Frequgncy response function

F ' Modulating frequency

Q Rotor angular velocity

ﬁ | | _-Rotor radius

M Advahce ratio.

B Qla@e flapping angie, positive up

fl

Mean blade angle of attack

a Lift.slope<. 
o R ‘Blac'ie:'cl'lllc')rd -
 7 | | fBladé'inertia_number
3 adr aensity
.W | betibéi’gust veiocity
Sg (f) ‘ Powéb spectral density of mean

angle of attack

§ﬁ (£) Av§fagé,pGWer spectral density of
: blade flapping angle
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a ¢ ,
! ! Constant coefficients in the blade

8s €p flapping equation deflined by

a3 (:3 ' ) equn, 3.3.9

B{f) Fourier transform of A(t)

Af) ‘ Fourier transform of &(t)

BI ‘ Blade bending stiffness

vy Vertical blade deflectlon, positlve up

T ' Blade axlal tenslon force

m Blade mass per unit 1ength‘

T _ A Distance of blade station from
rotor center -

X, Distance from rotor center to
midpoint of nth blade element

1, | Length of nth blade element

m Average mass of element n,
concentrated at point X,

Yn _ Bending deflection at point Xy

' | positive up
¢ | - Démping coefficient for blade

n
element 1h,‘concentrated at

point xn
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Slopé'of blade element n-

n
.(EI)n+i | Blade bending stiffness at point x +
Fn'” : : Average lmposed force on blade
o element ln, at point X,
Sﬁ+1‘ Shear force between blade elements
nt1 and n,positive up on element n-
Tped Axial tencion force between blade
o elements n+l and n, positive In
x ‘direction on element n
Mn+f- Spring moment between blade
element n+l1 and n, positive,
when counterclockwise on element n
Kn+1. ‘Spring constant of spring'between
element +1 and n
M ’ | Influence coefficient matrix with
elgmgnt ij ‘ '
i} - | Stiffness matrix with elements k..
i) - Unit matrix
] ' ' o Mass matrix
Eﬂ_‘A _ : | Damping matrix
e} Exclting force column with
' element f‘k '
A

Complex natural frequency

n)l BI-' .
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(F(w)}

29 ¢ .Tﬂ  ;
| Ef’?(.'w'ﬂ |

]

Modal matrix with elements A
‘where the latin subsecript refers

~3-

Force cross correlation matrix

with elements

Rrgk(-r ) = B ‘[fj(t)fk(t*“r;_' )

Force cross power spectral denslty
matrix with clements

Sl @) =B ENCINES

Fourier transforms of exclting
force column with element F ()

Deflection cross corbelation matrix

Deflectlon cross power spectral

denslty matrlix

Jv’

to the station and the greek

~ subseript to the mode

Diagonal matrix of natural

frequency. squares of system without

damping with elemehts&;UE

Inverse. of a matrix

Transpose of a matrix

Column vector

Row vector
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[ﬂJ Diagonalized masse matrix with
| element g, | '

EXJ Diagonalized stiffness matrix
~ with element x,

{n}' Column of normal deflectlon
| coordinates with .elements n,

{¢l Column of normal force coordinétes
with elements ¢,

Column of normal damping over
{¢} critical damplng ratios with
elemenﬁs Z,

[}ﬂ : Transformed mass matrix defined
' by eqn. 4.4.4

K Transformed stiffness matrix
| " defined by ean. 4.4.5

Eﬂ - . ' ‘Sﬁfessaéeflection matrix
_'0\  Stress
Superscripﬁs{ '
*- . ‘ Cohjugate complex
. ' ~ Tine difrérentiation
- o Time averaée.except_in Section 4.4

wheréathe—bap_dehotes;quantities'
in trapsformed equatiens fes
complex normal mode analysis
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Notation in Appendices:

Appeﬁdiﬁ: A:
A(t) S | - =Perioéié'timé function
2Ty " period of periodic time function
p ComﬁlexFourigr expansion coeff;cient
Appendix B:
91, 92, 0, Phase angles iﬁ-generalized blade
flapping equation defined by egn. B-1
_g% - Freqﬁency interval
n =_—%:- A constant integer
k= —— _ | Discrete vafiable
Sk(u) =‘§ﬂ (K wy) | Averagé poﬁer spécfrai density of

blade flapplng angle at end of
kth frequency interval.
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1. Introduction. The Significance of Lifting Rotor Random Loads
As of now the problem of 1ifting rotor dynamic loads
and vibrations has been treated almost excluslvely on the
basis of deterministic modeling. In the most advanced treatment
the flow field in the vicinity of the rotor is computed from
the system of vortices generated'by the blades, and the dynamic
response of the blades 1s obtained by computing the interactions
‘between the flow field and the blades. In comparing computed
and measured dynamic loads and vibrations, 1t 1s necessary to
assume stabilized flight conditions ‘Maneuver and gust dynamic
loads and vibratlons are treated as transients between stabilized
conditions. o :
This deterministic model of the generation of dynamlc

1ifting rotor loads and vibrations is in nany respects unsatis-
factory. Even under the steady flow conditions for 1ifting
rotor models in wind tunnels the blades perform sizable random
motions indicating the gross turbulent character of the rotor
inflow. In flight thls local turbulence. of the inflow is super~
imposed to the atmOSpheric ‘turbulence and to pilot control
_inputs which are both of a random nature. It would, therefore,
seem appropriate to try to treat-the problem of lifting rotor
dynamic loads and tibrations with probabilistic modeling techniques.
Such techniques have been successfully applied to the problem of
airplane gust responses, see for example Ref. (1) and (2},
Airplanes with known dynamiec responSe'characteriltics are used
to measure parts of the atmospheric turbulence spectra, and
these spectra are then used to predict . the gust responses of

new prototype airplanes in the design_stage. It 1s conceivable
that an‘approaohdalong these lines could be very useful for

the prediction of lifting rotor dynamlic loads and vibrations,
-though the problem is here much more involved than for airplanes,
because of the numerous significant degrees of freedom and the
'oomplexity ofkthe random phenomena associated with the rotaryw.
wing aircraft. It is rather surprising’ that apparently no-
previous efforts in this direction ‘have been made aithcugh for
some widely differing,lifting_rotor problems a’ description of
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the underlying phenomena by random process 1s called for.
The only indication that work in this area is planned was found
in Ref. (3) which describes a test set-up suitable for measuring
-the response of a beam te lateral random loads.
| The stochastic methods developed to analyze airplane
responses to atmOSpheric turbulence or to define atmospheric
turbulence by airplane response measurements are not applicable
 to 11fting rotors for two reasons:

First, the coefficients 6f the equatlons of motion
of 1ifting rotors are time variable rather than constant as
for airplanes. 3Second, the widely made assumpbtion that the
vertical gust velocities over the wing span can be approximated
by a single stationary random process is not valid for rotary
wings. The rotor blade will have to be subdivided in a number
of elements whereby the vertical velocity components at different

elements will be represented by different non-stationary

correlated random processes. The multiplicity and non-

sté.tibnarity of the random processes associated with rotary
wings invalidates the widely used relation according to which
the ratio of output over input power spectral density equals
the square of the system transfer function. Unlike airplanes,
it will be necessary to conalder variations of the turbulence
spectrum along the span of the blade. - The problem then would be
to derive such a distribution of the turbulence spectrum over
the blade span from the measured blade motions, or in a design
situation, to derive the blade random vibrations frém a given
distribution of the turbulence spectrum over the blade_Span.
For this reason neither the theoretical nor the experimental
methods available for determining airplane responses to
atmOSPheriq turbulence can be adopted for 1ifting rotors, and .
new theoretical and experimental technlgques must be developed.

Six types of 1ifting rotor problems where the applica-
tion of random process concepts appears to be promising will
be briefly discussed,
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1.1 'Lifting Rotor ResPcnse'to Atmospheric Turbulence

In order to study the lifting rotor response to atmos-
pheric turbulence one could think of testing a rotor model
in a wind tunnel equipped with a gust'generating system.
Such a system has been installed in the NASA Langley Transonic
Wind Tunnel and is described in Ref. (4). The system simnlates-
a low amplitude continuous sinusoidal vertical gust. Under the
usual assumptlon made. for frozen wing aircraft - the vertical

gust velocity can be represented by a single stationary random
process - 1t 1s sufficientito measure the model response to .
‘sinusoidal vertical gusts over an adequate frequency range,
since one needs only the system transfer function. For lifting
rotors, however, for reasons explained before, the knowledge

of the transfer function is not suffidient. The gust generator,
in order to be applicable to 1ifting rotor models, must be
capable of producing the entire gust spectrum with the proper
amplitudeiratios No such device has apparently been designed
or built anywhere as yet Correspondingly, a theoretical
computation of system transfer functions, as it is performed
"by the various sophisticated computer programs developed for B
1ifting rotors, 1s also not adequate for the problem.of lifting
' rotor response to atmospheric turbulence, and considerably
more elaborate programs will have toﬁbe developed for this
purpose. | | ‘
1.2 . Stopping and Folding of Lifting Rotors in Flight

The helicopter lindustry 1s vigorously working on

problems of stopping and folding of 1ifting rotors in flight
'in an effort to develop alr vehicles which combine the

hovering efficiency of the. helicopter with the cruising
'efficiency of high performance alrplanes. Wind tunnel tests
h‘have been’ conducted to study the stopping and folding process
of 1ifting rotor models in a- steady flow.r Because of . the-
”crucial effects of atmospheric turbulence these tests cannot _
"be considered realistic. Even if the transfer functions were
;_to be determined analytically or experimentally in a wind tunnel
" with 1ow amplitude sinusoildal gust simulation, the results '
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could not be applied to the problem (except when the rotor 18
stopped) because of the frequency shifts produced by the time
varyling coefficients in the equatlons of motion. The solution 
of the problem requires new methods of analysis, and in an “
experimental approach the model must be subjected to often.
répeated stopping and starting conditions with a simulation of
the full turbulence spectrum.
1.3 Lifting Rotor Hovering Performance

In spite of several decades of 1lifting rotor research

and development, hovering performance prediction for new types
of protors is still quite poor. Thé,widely accepted and cdntin—
uously refined methods of performance prediction very often
miss the mark by relatively large margins. A 10% overestimate
of hovering performance is usually equivalent to 30 %o 500
overestimate of payload and can have very serious consequences,
Tt 1s also known that certain types of atmospheric furbulence
can considerably degrade the helicopter OGE hovering performance.
Great progress has recently.been made in the cémputatibn
of the vortex wake systenm generated by a hovering 1ifting rotor..
These computations, in agreement with test observations, have
shown that the trailing vortices of one blade can get into the
path of the subsequent blade whereby considerable drag‘increases
and 11ft losses occur. The presence of étmosphéric turbulence
Will'amplify'this tendency. A satisfactory definition and
prediction of 1ifting rotor hoveringrperfOrmance should, '
therefore, include the effects offatmoépheric turbulence and
the associated random control inputs. '
1.4 . Unsteady Blade Aerodynamics
Another area of 1ifting rotor research where lately

considerable progress has been made is that of unsteady blade
aerodynamlics, particularly in the region of ﬁartial blade

stall. The unsteady stall phenomena are highly complex and
very much dependent on the'time histgry bf'blade.angielof.attack
changes. Atmospheric turbulence will probably have a large
effect on unsteady blade stall. Since the blade stall phehomena

provide the forward speed limitation of most rotary wing
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'faircraft, theory and testing in this regime also seems to
require the application of the concepts of random processes.
1.5  Vertical Descent in the Vortex State '
Another flight condition where the lifting rotor
loads are baslcally of a random nature, is the descent in
‘the vortex state. Both rigild and flapping rotors show large
thrust variations beginning at quite small vertical descent
‘rates and becoming maximum at the fully developed vortex
state inflow pattern. Such thrust variations have been
degcribed for example in Ref. (5). A theory using random
process concepts would appear to be suitable for this flight
“condltlon.
1.6 Transition from Hovering to Forward Flight and Vice Versa
Tt 15 well known that most hellcopters have a slow.
Spéed range corresponding to advance ratlos between .05 and .10
where dynamlic blade loads and vibrations are much higher than
in crulsing flight. Take-off and landing maneuvers fall into
this slow speed range and contribute to the high level of
dynamic loads and vlbrations. Flow thfough the rotor disk
1sAétrongly non uniform and wake recirculation takes place.
No adequate deterministle theory of thls complex flow state
has been established as yet. The transition phenomenon also
appears to be a promising candidate for the application of

i

random process theory.

_ The precedling six cases where-liftiﬁg rotor responses

to random inputs are of Importance are by no means exhaustive,
It is also not at all obvious how to approach these problems.
Their listing here has merely the purpose to provide some’
motivation to the search for suitable methods of treating lifting
rotor random loads and vibrations.
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2. Surq#y_of Random Process Theory Related to Lifting Rotor
Problems '

Random process theory so far has been predominantly
~applied in communicatlon and auvtomatic control englneering.
Its application to mechanical systems and structures is still
quite limited. A number of good textbooks on random process
theory and measurements have recently been published for example
Ref. (6) and (7), and some modern textbooks on mechanical
vibrations contain a chapter on the response of structures to
random inputs, see for example Ref. (8). ‘Most of the '
literature deals with constant parameter linear systems subjecﬁed
to a statlionary random input. Very little work exlsts on non
stationary random inputs as they oceur in 1lifting rotors,
and no previous work was found on the computation of responses
of time varying linear systems to'random inputs which 1s
requlred in the random flapping. and flap-bending analysis of
1ifting rotor blades. The response of complex structures with
many degrees of freedom subjected to multiple correlated random
inputs has only very recently been treated in a few papers,
see for example Ref, (9) and (10), and the best approach'tp _
this problem which must be solved for the lifting rotor, is by
no means obvious. Thils section glves a brief survey of random
process theory as related to 1ifting rotor problems.
2.1 General Remarks on Random Processes

A random process is defined as an ensemble of random
sample functions x(t) which can be desc¢ribed by a variety of
probabilistic measures. The first- order probabilitﬁ*p(x1)
glves the distribution of x; = x{(t,) over the ensemble at the
time t1.. For the sake of simplicity we will ‘assume here that
the expectation or mean value of x{t) is always zero:

(2]

Hy = E[X(t)] = f xp(x)dx = 0 2.1.1
—oe ‘ .
The second order probabillity p(x1,xé) gives the joint distri-
‘bution of x4 = x(t ) and X, = x(t ) at the times £y and t2‘
The expectation of the product x1x is called the autacorrelatiun
function Rx(t1,t )
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' o
Rx(t1,t2) = B [x1x2] = i‘x1x2p(x1,x2)dx1dx2 2.1.2
—0

and is in general a function of both t1 and t2.

Higher order probabilities P(xi’xg’xs"") and higher
moments E [ xyx,%5. ..] can be defined and are necessary for a
- complete description of’ a random process Usually one limits
the description to the first and second order probabilities.
For the special case of a normal or Gaussian process, such a
description 18 complete. ' ‘

‘In the case of two correlated random processes with
sampie functions x(t) and y{t) there exists a second order Joint
probabllity p(x1,y2), where x, = x(t4)3 Vo = y(tg) The
expectation of the product X415 1s called the cross ~correlation
function ny(t1,t2)

. o
ny(tT’te) = E[xwz] = gx1y2p(x1,y2)dx1dy2 2,1.3

We now introduce the complex sample Fourler transforms‘bf the
sample functions x(t),y(t)

X(£) = j x(t)e a&
&, | 2.1.4
v{£) = j y(t)e 187l qg

-L0

-l27rft

with‘their inverse

i2wft

x(t). - ar

X(f)e

2.1.,0

.y(t) = Y(f) i2wftdf

8
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The probabilistic measure in the frequency domain
which 1is equivalent to R (t1,t ) in the time domain is the.
expectation of the product of complex sample Fourler transforms
E:[X (fQY‘f )] which is called the double frequency cross-
spectral density. It can be shown that it is related to the
cross- correlation function by

(f1, 2) = E [x (£, )Y(fe) J].ny(t1, 2)eiz"r(fl 17 ?2)dt,dt2
51,6

rTﬁe inverse relation between cross-correlation function and
double frequency cross-spectral density is given by

o
_ —iom( £ b, -£,8,)
ny(t1,t2) = j}sxy(fi,fe)e | 1t¥17"2"2/ar,dr, 2.1.,7
-0

The corresponding relations between auto-correlation function
and power spectral density are obtalned by replacing ij bj R,»
- 8y by 5, and Y(f } by X(fe) \

f Random processes are called weakly stationary if the
j first order probabillties are independent of time and if auto-
‘ccfrelation,and croséécorrelation,functions'depend‘onlyﬂon'the
‘time difference’ T = t,-t; and not on t{+t,. In this case
| onE-can prove the inequalilty A

| Ry { T2 N R, (0)R,(0) 2.1.8

which allows to define the normallzed cross-correlation function

- R,_(T) R,.(T)
P (1) e B = L 2.1.9

x - AR (OR(0) & %
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. where g, and 0. are the standard deviations of the time
1ndependent probability distributions p(x) and p(y). For
= y one obtalins

le(r)-I < RO = ¢f 2.1.10

If in the time domain R, (ti,t } depends only on =t «t1
and not on t +t2, it oan be shown that in the frequency
domain Sxy(fT’ 2) also reduces to a function of a single
frequency given by

.o

S,y (1) = E.[X*(f)Y(f)] = J. ny(-r')e_"i?“f" ar - 2'.'.1.1_1 |

-0

For x = y this reduces to
8.(f) = E[x*(f)x(f)] 2.1.12

In words: The power -spectral density of a statlonary random
process 1s the expectatlon of the product of a sample Fouriler
transform with its conjugate complex value.

If the expected values taken over the ensemble of
random functions are equal to the corresponding time averages
‘taken over a sample functlon, the stationary process 1s called
-ergodic. In thls cabe

T
R_(7) = E[xy,] =3 LV x (t)y(eer)at 2.1:13
Xy X192 T 2T | X \VWY (113
' T

While the double frequency power spectral densitles of non-
statlonary random processes cannot be measured unless an entire
'lensemble ‘of rardom functions is available, (f) and S (f)

for stationary ergodio processes are measurable, if only a
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single sample function is glven. In order to obtain S (f)
“one merely has to send the SLgnal from a random sample
funetlion through 2 narrow band pasg fllter with the center
frequency f and bang width af and‘square and average it over an
- adequately long time period and divide the result by Af. |
' _ For a ergodic process - agaln assumlng zero mean
- value of the random function - the standard deviation o,
-~ of the probability distribution can be expressed elther by the
 value of the autocorrelation function for T= O or by the
Integral over the poﬁer spectral density: '

2 2  1im 1 j 2 _ _
0% = | *Polxiax = 20 L §<P(t)at = R (0) - | s (nrar
- T o -

2.1.14

Thus, for an ergodic process, the standard deviation of the
probability distribution over the ensemble of random functione
at any given time t equals the root mean square value taken over
‘any sample function and can be obtained also by integrating

over the power spectral density distribution;. For an ergodic
‘random process the time rate of the random Tunctien 18 uncorre-
lated to the functien value ‘at the same time. The standard
deviation of the time rate is given by either one of the

it expressions:

T ) .
o oo
6.2 = | #p(x)ax = 20 L f 52 ()at - -, (0) = J’ (wa)es (£)ds
| . | &

_ 2 1. 15
- An important concept applicable to the fatigue of structures

 .“under random loads .1s. the expected number of crossings of a
“' fcertain level per unit time. For a normal random process

_eaione can show: that the expected value of positive. crossings
_ fper unit time of the: 1eve1 a ie given by

f--_a2 f:
' 2
S 2 @ '
+ X = : _
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Making use of the two preceding equations the expected value
of positive zero crossings {(a = 0) per unit time is

J(wa)gs (£)dr
+ 1 - RS
V= o7 o :
s (£)ar 2.1.17
—m N )

For a narrow band process almost every posltive zero crossing
leads to a full ecycle, so that this equation, when applied to
narrow band processes, also gives the expected value of cycles
pér-unit time which is important in fatigue conslideratlons,
2.2 Response of aIConstant'Parametér Linear System to a
Stationary Random Input ' '
‘ A linear dynamic system wlth constant parameters can be
described by the unit impulse reSponSe function h{( ¥). For a
general input x(t) the system response is then given by “the
convolution integral ‘

o0

y(6) = [ n(T)x(t-7 ar 2.2.1
0

Taking the Fourler transfofm on both sldes of this equation
‘results in the relation

¥(£) = H(£)x(£) 2.2.2
' :where'
H(f) = f n( 7 )e 27T gr . 2.2.3
- .

is the complex frequency response function of the system.

For statlonary ergodic random inputs one determines the response
 ?auto-corre1ation funetion by taking the expected value of the
~product y(t)y(t++). ‘With the help of the convolution integral

 this results in the following relation. between. input and response
auﬁ@wggrre;atign fun@tignz
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o : ) '
Ry(f)=5 ijh(e)h(ﬂ)ﬂx(7+$~n)d$dn 2.0
‘ 0 o
_The corresponding relation in the frequency domaln 1
s,(£) = | () | ¥5,(F) S 225

All terms in this simple equation.aré real. The response
-standard deviation is given by

- f' H(r) | %s_(r)ar 2.2.6

ahd a& is again edual to the root mean square value taken
over a sufficlently long time period of a sample response
function,.

The relation according to which the response power
spectral density is equal to the input power spectral donsity
multiplied by the square of the complex frequency response |
function is very widely used in'many applications of random -
process theory. However, its validity is strictly limited
to the case of a constant parameter linear system with a
single stationary ergodic random input.

2,3 Response of a Constant Parameter Linear System to a
Non Stationary Random Input

A general solution of this problem has been developed
by Caughey in Ref. {(11) in form of complex double and triple
'integrais. The practical problem 1s that, except 1n specilal
cases, the complex double frequency power spectra associated
with non stationary random processes, cannot be measured wlth
a single sample function, since 1t takes the entire ensemble
of funotions to define the variation of its probabilistic
measures with time. There are, however, two speclal cases
‘where the power: spectral densities associated with non stationary
random processes can be derined and measured when only a’ single
sample function is_available. In both cases the non stationarity
15 due to a deterministic time trend. Such phenomena have been
treated in Ref. (12). : '
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In the first case the time trend is slow as compared
to the random instantaneous fluctuations, So that the pro-
babllistic measures can be determined with a single sample
function by selecting an averaging time which 1s sufficlently
long to obtain statistically meaningful values for the auto-
correlation function or power spectral density bﬁt which is
sufficiently short to exclude substantial effects of the slow
time trend. Random processes which allow such measuring procé4l
dures are called lécally statlionary. |

In the second case the deterministic time trends are
periodic so that time averages of autocorrelation function and
power spectral density can be defined. -Since-this{case is
important in 1lifting rotor theoryrit will be discusséd here in
more detail. We assume that x{t) is a sample function of a
stationary ergodic random process and we would like to know the
average autocorrelation function and the power spectral-density
of the modulated random sample function y(t) defined by

y{t) = x(t)cos2rFt" 2.3.1
The autocorrelation function is:
By(t1,'t2) = E [x(t1)x(t2)] cos 27Ft;cos2nFE,
= (1/2)RX('r)(cosE'rrF1'+cos21rF(t1+t2)) 2.3.2
where T = tE_t1'
Averagling over & sufficiently long time period,'the 1ast term
will disappear and one obtains for the time averaged auto-

correlation function

ﬁ&(r) = (1/2)3x(r)cos2wFr 2.3.3
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~ The average autocorreélation function of the modulated stationary
‘random function x(t) 1s obtalned by multiplying R, (*) with
(1/2)cos2nF

The corresponding pover spectral density can be either
obtained by using the relation '

o0
5,(£) =,,J R (7)e 12TT gr 2.3.4

‘or by taking the Fourier transform ¥(f) of y{t) and inserting
it in the definition

5;(f) - E-[Y*(f)y(f)] S 2.3.5

The result is in either case

5,(0) = (1/8) [ s,(e-F)es (r+m)]  2.3.6

This power spectral density would be measured if a sample
function y(t) were analyzed in the usual way by sending the
signal through a band pass filter with a band wildth Af which
is small as compared to F and by squahing and time averaging
over a time which is large as comparéd to 1/F.. If the response
power spectral denslty of the constant parameter 11near system
with the forcing function y(t) were determined in the same way,
it would be given by | H(£) | °3 (f), where H(f) is again the
complex frequency response function of the system. _
2,4 Response of Time Variable ‘Linearp Systems to Random Inputs
A linear system with time varying parameters - like a
1ifting rotor flapping blade - can be described'by the unit -
impulse response function, which npw.islnot only dependent
on the time T elapsed since applying the unit impulse, but
also on the time t at which the impulse hadrbeen applied: " h{ 7,t).
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" In general the computation of h{ T,t) 1s not possible in closed
form and numerical methods are required to find approximate
solutions. For a general input x(t) the system response is
again given by the convolution integral

y(t} = jh(‘r",t)x(t-‘r)dp 2.k
0 . :

The frequency response function is also time varlable and
determined by

.o .
H(f,t)'e' j h(7,t) e’ig’ff" ar 2.4.2
-% , .
Taking the expected value of the product y( 1),y'(te) one obtains
with the help of the convolution integral the following relation
between input and response autocorrelation functlon: .

Ryltq,t,) = .U'h‘ §,59)n(n,5,)R (8- 4 ,t,-7 )af dn 2.4.3
1The corresponding relation 1n the frequency domain 1s
(e =]
s,00,55) = [ s.(6,m)3" (8, g-2)3(n, n-g)a an 2k
o . n |

where

oo}
J( ¢ ,f)'= j H( & ,t)eteTT g 2.4.5
-& o ‘
.Apparently no. attempt has been made as yet to solve these
equations for an ‘actual problem. A eolution would be -extremely
.difficult, gince already the ‘unit impulse response h(1-,t)
is not given analytically but must be approximated by numerical
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methods. The solution then requires triple infinite integrals
over non analytical complex functlons. Furthermore, as men—'
tioned before, the input and output double frequency power spectra
cannot be measured with a single sample function. However,
1f the variable parameter system is electronically simulated
the input-output relation for power spectral densities can be
experimentally observed under certaln conditions.
2.5 Response of Iinear Systems to Multiple Random_ Inputs

The application of random process theory to complex
structures with multiple random inputs - even assuming

statlonarity - has not as yet progressed to a point where a .
good understanding of the various possible and necessary
approximations has been achieved. The problem of random

blade flap bending 1is therefore.presented'in.Section 4 in
consliderable detail. A substantlal eimplification is possibln
if, as usually assumed, the damping of the structure 1s small
50 that normal mode cross damping terms can be neglected.
Unfortunately, 11fting rotor'blades have large aerodynamic
damping at least in the low frequency modes and not all cross
damping terms are negligible. In this case, it may bhe simpler
to transform the second order differential equations of the
structure into an equivalent system of first order equations
w;th respect to time. The normal modes are then complex and
more difficult to. handle, but the frequency response function
is much simpler than for a second order system. Section L
includes the general eolutione both for a second order repre-
sentation with real normal modes and for a first order repre-
sentation with .complex normal modes. | '
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3. Random Blade Plapplng . ‘

| _ For sufflclently slow excitdtion the 1ifting rotor blade
will regpond mainly in lts fundamental mode, that is in the
blade flapping mode. For bladed attaclied to the hub with
flapping hinges,lthis is a rigid bvlade mode, For blades wlthout -

flapping hinges the mode involves flap bending, however, in
first approximation one can sﬁbstitQte rigid flapping about an
off-set hinge. In the following a very-simple.analyticél
blade model is assumed which is adequate to discuss the basle
problems of a random loads and vibration analysis. '
3.1 Assumptions

It is assumed that the atmoupherlc turbulence ditectjng
1lft1ng rotor blade flapping consists of vertical velocity
' fluctuations which are uniform over the rotor span and which'
have a wave length which 18 large as compared to the effective
rotor dlameter. This type is-calied one-dimensional isdtropic
turbulence and 1s frequently ﬁsed for airplane turbﬁlence
pesponse calculations, see for example p. 21 of Ref. (1).

In a first order blade flapping theory valid for
small flapping angles @ , zero flapping hinge off-set and for
moderate advance ratios u , one obtains the followlng equation
of motion {see for example Ref, (13), equn. (15))

§+'%{1+ 2+ osint)d +(1+ X —E_ cost)f = Ta (1+ gﬁlsint) 3.1.1

The equation has been linearized both with respect  to the.
flapping angle §# aﬁd with respect to the rotor advance ratio u .
The time unit has been selected so that the rotor angular veloccity
Q is one. The only bladg'parameter-in_the equation is the
non-dimensional blade inertia number ¥ which for practical
‘rotors has values between 2 and 10. Actually, the blade angle-
of attack a should vary both with radius and with azimuth
angle. However, in this simple mathematical model an average
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value & has been assumed which ie independent of radius and
blade azimuth angle and which 15 directly proportional to the
vertical gust velocity Using .7R-as effective robtor radius,

the relatlon between vertical gust veloclty w'and a 1n:

3.1.2

Thus;‘the average angle of attack & directly reflects the
atmospheric turbulence and is under the usual assumptions a-
stationary random functlon.

The stationary random process @ , according to the
blade flapping differential equation, 1a'modu1ated hy the
deterministic time function (1+ ?Jxalnt) and this non-stationary
random input acts on a linear system with pariodically varyinb
. parameters, In a morelrefined analysls conzildering the varia-
bility of the angle of attvack with,radius and with blade
azimuth, & would be replaced by the product of w with a deter-
“ministic time functicn. ‘ '
' From the physical aspects of the problem it is clear,
.that the assumption of a locally stationary process, discussed
in Seqtion 2.3 1s Qgg_satisfied.for g or &sint., The time trends
from sint and cost are not slow as compared to the gust velocity
fluctuations. -
3.2 Small Advance Ratio

jFor small advance ratlo p the periodicity of the para-

meters in the blade flapping equation can be neglected.

In this case the average power spectral density of the random
input can be_eaSiiy computed, since‘the modulated angle of
attéck & sint has the average power spectral density )

1/”- [Sa' (f— -IE—*_I'_[-_)'I‘SE (f+ ;—ﬁ)] - . 3.2.1

see Section 2.3 (the relationh given in Section 2.3 for the
modulating function cos27Ft is also valid for sin2w7Fit).
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If H(f) is tne complex frequency response functlon for the blade,
‘which, for constant parameters, has the value

1 ‘
~(ent) +i2med +1 - 3.2.2

H(r) =

one obtalns for the average power spectral denslty of the
flapping angle 8 the value

IH(f |2 [(Y)ESE (f;)*}(%‘%z'{sa (f" '"g,g;)JrSa {F+ 'E"Jf}]

3.2.3

Cf]{

In the absence of a solution for periodically varylng para-
meters 1t is not possible to quantitatively establish the
advance ‘ratio range u for which the above solutlon 1s a good
approximation. It would appear, however, that an advance
ratio of ® = .1 should show a negligible effect of the
‘# -terms in the factors of g and @ . It is noteworthy that
this advance ratio range 1ncludes the region of transition
from hovering to forward flight and vice versa, during which
considerablé random loads and vibratlons are encountered.
3.3 Moderate Advanece Ratio |

Inasmuch as up to now the only non stationary random

processes which are analytically manageable are stationary
processes which are modulated by a time function (such pro-
cesses are treated in Ref. (12)), one might try to find a
solution to the blade flapping equation 3.1.1 by assuming
that the flapping angle # represents a stationary random
process multiplied by a periodic time function. Since the J

B input random process 1s of this type 1t may not be unreasonable

to expect that at least to a certain approximation the response
random process is of the same type. When time averaging the

'autocorrelation function of such a process ‘one finds that the
result depends only on TVe t2 t1,.n0t on L1 pr tg, same as for
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- stationary random procesge" In'the frequency domain, time

averaging amountu to multiplying the double frequency power

spectral density with the delta function a(fz—f1), thus

reducing it to a single frequency power spéctral-density.

- This is sﬁown for the general case of a periodic medulating

- function in Appendix A, Here we will consider the Spécial
case ' :

y(t) = X(t)coSEth | B - 3.3.1

~ treated in Section 2.3. x(t) is again a sample function of a
stationary random process. According to eqn. 2.1,6 the power
spectral density for y(t) is:

sy(r1,f2) = E [y*(f{)y(fai] | 3.3.2

. Applying the postulated fule, that time averaging corresponds
in the frequency domain to multiplication of the double
frequency power spectral density with &(f —f1), one obtains
for the power spectral density of the randomn. process with time
averaged autocorrelation function -

Se) - sylee) sty 333
or .._E'(f).=-$ [Y*(f)y(fﬂ | ' }"'“ | ) : '4 3.3.4
Siﬁce Y(f = 1)2(x(f+F)+x(f F}) | and o 3.3.5
'gnmeE[x(puﬂxunFﬂ =0 | R 5.3.6

" one obtalns

_§§Kf).=.1/ﬂl[sx(ffﬁ)+8x(f;Fﬂ T 3.3
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in agreement with eqn. 2.3.6. 1In pérticular, we have for the
power spectrai denaity of the time averaged random process the‘
rule, that the sample Fouriler trangforms are uncorralated

for different frequencies:

* o
E [Y (fg{(fg)] = 0 er“fﬁa £, ., 3.3.8

same as for statlonary random processes.

Let us now assume that the random process with sample
function g(t) from eqn. 3, 1.1 is of the type, where the
averaging rule applied. We first write egn. 3.1.1 in the form

F+(citaqnint) g +{c ta co8t) 8 = slnt)a 339

(03+a3
Thié eQuation is Fouriér transformed by considefing the following
function pairs ’
g{t) « B(L)
cost g(t) «— (1/2){ B(f- »———)+B(f+ ——-)} |
() — 2mifB(f) - - 3.3.10
T 1 1, 1 IERE
it (8) — 7 { (0= ZIB(e- ) ~(o+ 5 )B(r+~§-,;-)}
G(t) — -(2rr)%B(£)
One then obtains
o o U 1,
-(_az-:rf_1)23(f.1 J+eq2mify (1 )+a}7r{(f1- 5Bl Z7)
e ] Y IR INT
~(£y+ 5)B(E 5—)}+c 13(1{‘1 )+ = {B(£,- -2-?1_-)+B='(_I‘1+.§-l-1-r-).} -

¢ A(f1)+ 23 {A(f1- -—J+A(f1+ %?)} ' 3.3;11
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~ The conjugéteiéompiex equation with fé instead of [y reads:

_(waa)zﬁ*(fg)'~012wif2§(fé)+a11r {( - C,W)B (f,- ==)

st 27
BT x, . G o | yE ] .
(£ 4 VB (£ 52) } e B (£,)r 2 {B (fp g)+B (2% = =

4B (Tt l—)} - 3.3.12

27

A I(f2)+ —= A (f‘2- o

3
‘Multiplying the last two equat*ons'with each other and taking
the expectation of the product leads to an équation for the
double frequency spectral density S (f1,f ). Multiplying thia
equation - further with s(r, ~f4) reduces the double frequency
spectra to single frequency spectra corresponding to_theltime
averaged autocofrelation function. In this final equation =
the imaginary terms cancel each other: -

5 (£) { (21rf)4+(c121rf)2—202(21rf)2+c22} o,

%Eﬁ (§+ %?:-{iﬁf{ef(f+ ;ﬂ)Q.fééig:ew(f+.%#)+ ng-}

'+‘s'ﬁ (f—- ;—n- {i&i(ew(ﬂ ) '+ 1% 27r(f T 5=)+ :ﬁi} |

= ‘caesa' (£)+ E-E-E—’{s;_ (£- T;,-7;)+sE (£+ %-1-;)} 3.3,13

We have here a functional eguation between Sz (f) and §a (£)
which can be approximated by a system of linear equations
valid at the frequency points O, Af, 2Af . . . By inverting .
this system of linear equations Sﬂ (f) can be obtained from
Sg (f). The details .of the computatlon are presented in Appendix B.
: Again, in the absence of a rigorous solution of the
problem it is not possible to establisb the advance ratio
range for which eqn. 3.,3.13 is useful An attempt has ‘been
made to compare the . result of eqn. 3, 3 13 for a number of
cases with the results of simulator studies. As of now,

the comparison is not conclusive. o '
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. Numerical computatlons of DB {(r) in Appendix B, _
~assuming a blade inertia number of ¥ = 4 and an advance ratio
of u = .3 have shown, that for typical power gpectral density |
distributions Sz (f) eguation 3.3.13 gives a blade flapping
power spectral density Sg (f) which is approximately 1dcntica1"
to that obtained with equation 3.2. 3. It would then appear
that the damping and stiffness variation in eqn. 3.1.1 is
negligible up to an advance ratlo of u =j .3. The reason for
this result is that for ¥ = 4 and u = .3 the numerical values
for a12, aq é and 322 are two orders. of magnltude smaller than
the numerical values for c1 and Cps '
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I, Random Flap Bending
Though ultimately the problem of random blade flap
bending will have to be solved for non statlonary random

inputs including the periodic parameter variations of ths
system, the analysis 1in this section ignores the non otationary
~-character of the input and the time variability of the para-
‘meters. Nevertheless, the many degrees of freedom and the
multiple correlated random inputs require a rather complex
analysis. The usual variability of sbtiffness and mass over Che
blade length make a rigcrous solution of the dynamie problem
not feasable and numerical approximations must be developed.
The method selected here makes. use of influence coefficient

and stiffness matrides derived from a certain disoretization
of ‘the blade.

_ Three types of analysis are outlined. For the first
‘type the system response 1s computed directly with the general
admittance matrix. For the second type the response 1ls com—'
puted with the help’ of the real normal modes of the undamped
system.' Under certain conditions normal mode cross damping -
terms are negligible and the admittance matrix is diagonalized.
If these conditions_are not satisfled a third type of analysis
is possible where the second order differential equations with
respect to time are transformed into.a first order system. o
The eigenfunctions of this system are complex, but the admittance
. matrix can be diagonalized for this system without any limita-
tions _

" The discrete blade element considered 1ln the present
analysis is a simple one - a rigld element in which the bending
stiffness 1s simulated by introducing torsional. springs at the
ends. The matrix formulation of the problem i8 not much more
-complicated if, instead, elastic elements with constant or
Llinearly varying strains are used as suggested ror example in
Ref (14)
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h.1 Derivation of Blade Stiffne s Matrix

- In a rotating reference system the equation for the
vertical deflections y (positive up) of a rotating blade 1in.
'hovering, using quasistatic aerodynamics and neglecting coupling'
with chordwise bending and torsion reads (see for example -
“Ref. (15))

2
' Qr. Qr
(EIy') {(Ty" ) +my+acp 53 = acapi—?’z—)— b.1.1

Instead of solving this differential equation by

. numerical-methoqs the blade is subdivided into a number of
‘rigid elements*connected by torsion springs in the way shown
"in Fig. 1., Mass, aerodynamié damping, and imposed external
forces are assumed. to be concentrated at the element midpoint.
~In order to obtain the influence coefficlent or stiffneés |
matrix of the discretized blade, we assume forces F acting

~ at the element midpoints and compute the vertical deflectiona

y at these points from the equilibrium equations.
The horilzontal force equilibrium equations

Tn+1+mnxn Q “‘Tn = O F) n= 1,2-.-.-m 7' | ' . 4-112

are uanupled from the remaining blade equlilibrium equations
" and cen be summed to obtain the tension force T :
2

m
T o= 2 O m X ) :

m designates the furthest out blade element at the blade tip.
The moment equilibrim about the left endpoint of
element n 1s expressed by the equation

1

. . n
M.-M o+ ToePnln = S1ln * o o 4,1.4
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P ' DIMENSIONS AND LOADING FOR ANY TWO ADJOINING
ELEMENTS WITH LUMPED PARAMETERS OF MASS, DAMPING

~ AND STIFFNESS.

I e

(4C,Y,)
| | ‘( ’m“;o ). D nel “
T C i - ﬂl
.!" _ -

" FORCE SYSTEMS ON A TYPICAL ELEMENT n,
(DYNAMIC FORCES ARE SHOWN IN BRACKETS)

FIGUREY ' DISCRETE ElEMEN‘ IDEAlIlATlON FOR BLADE
FLAP ~ ~BENDING
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ar, introducing the shearforce

m
S"‘“.: 32=:n+1 F, | B W

‘_by the equation

: 1
- - n y -
M Mn+1+TnﬂBn1n = 1 _FJ+Fn t.l.6l

M=

. ﬁ1

J = ol

There are‘m‘equations of this type

Introducing the spring constant of the torsion spring at the point

1
n
Xy b= by
EI

1 .
K,y =it 4.1.7
n+1 X001 %n &

the torslon spring equation reads

M |
0 .9 = ol 4.1.8
1 n Kn+1. ,

For the cantilever blade there are m equatlons of this type.
~ For a hinged blade the filrst torsion spring equation is
. replaced by the boundary conditioh“i\'l1 = 0.
 Finally the relation between slopes @, and vertlcal deflection
¥, 18 obtained: o :

v =8 EE + 8 Ins1 _ _ . : 4.1 o
Yne1Yn = On2 1T 2 . . o 419
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There are m equations of this type, the first one having the

form 11

V1= Oz
Thus the 3m unknowns y1...ym, 01...0., M1...Mm are uniquely
defined by the 3m equations 4.1.6, 4.1.8 and 4.1.9. Since the
last set of egquations 1s independent of the first two sets,
O1.ne By Myol M are calculated from equations 4.1.6 and
4,1.8, while eqn. 4.1.9 is required for the calculation of
the influence coefficients. Once the Influence coefficlent

matrix [w] with the elements v

ij"‘}*f;
has been computed, the stiffness natrix [}ﬂ is obtained by
inversion, since

M o = [ 4,1.10

4.2 Response Analysls with General Admittance Matrix

_ The equations of vertical motion for an assemblage
of discrete blade elements have in matrix notation the form

[m] (¥} + [c] {31 + 0 {st = {f}  &4.2.1
In subscript notation these equations read
mkyk + ckﬁk * 2: kkjyj = fk’ kK= 1,...m.
J .

[m] , [c] and [k] are the mass, damping and stiffness

matrices respectively. For the blade flap bending problem

mass and damping matrices are diagonal, however, the theory

is developed here for the general case of non diagonal mass

and damping matrices. Various aspects of the response analysis
of llnear systems under random excitations are presented in
References (8), {(9), (10), (16), (17}. The common features

in all these investigations are the following:
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1) discretize the continuum to obtaln a tractable spectral
representation of the execlting system of random loads
in different elements by different correlated random
o pfocesses.
'11)  under the hypothesis of weakly stationary and ergodic
~ behaviour of the random process determine the output
- power spectral densities from admittance matrix and input
power spectral densities,
The complex admittance matrix for the system defined by
equation 4.,2.1 1s

ﬁ{@»ﬂ - [- we[ﬁ] + 1w [p] + [k] ]" h.,2.2

This expression replaces the frequency response functlon glven

tn eqn. 3.2.2 for blade flapping. « has been substituted

for 2wf. The complex natural frequencies are obtained as thg
roots of the characteriétic equation :

PBm] «+a[] + ] =0 e

Under weakly statlonary and ergodic. assumptlons, the
input power spectral density and the admittance matrix
completely describe the output power spectral density. The
power spectral densities now occur in form of matrices.

For example the matrix [ 00] with elements ka(w) is
defined by

Sf‘jk(w) =R [FJ*(w)Fk.(w)] )4-..2."-'-

where F, (o) is the sample Fouriler transform of the input
‘random force acting on blade element j. The deflection or
ohtput power spectral density matrix [Sy(wﬂ . with elements
‘ w) is determined by

[Sy(w)] = [H*(m)]T [sf(m)] [u(w)] 4.2.5

v
I {
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This relation replaces egn. 2.2.5 for a single degree of
freedom syetem for which the output power spectral density
'equals the input power spectral density multiplled by the
square of the frequency response function. _

| The autocorrelation runctione of the single degree-
of freedom system is now also replaced by a matrix. For the
input forces we have the cross- correlation matrix [ f(rﬂ
with: the elements R k('r) defined by

f _
Ri(r) = [fJ(t)fk(tw)] 5.2.6
For T= O one obtailns the fonoe cross-correlatlion matrix
between blade elements

[Rf(o)] .=~‘£°}Sf(w)}jw | | b2

and a similar expression for the deflection cross-correlation
matrix

l[Ry(O)] =*a‘[°ESy(w)]dw | S h,2.8

This expression replaces ean. 2,2.6 for a single degree of
freedom. The diagonal terms of [Ry(oﬂ represent the
mean square deflections of the varlous blade elements and
the off-diagonal terms represent the deflection cross
correlations between different blade elements. '

. In principle, glven the 1nput power epectral density
matrix [S (wﬂ and the complex admlttance matrix H(mﬂ s
the output power spectral density matrix [Sy(o)  can be
computed from eqn., 4.2.5.. It is noteworthy that this analysis
.lcan be performed without making any assumptions with respect
to the damping matrix. But a major drawback 18 the manipulation
~of the admittance matrix containing complex elements. These

—difficulties are avoided in a modal analysis for which the
admittance matrix 15 dimgenalized.
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4.3 Real Normal Mode Analysis
‘For many structural problems 1t 1s adequate to perfdrm a
normal mode analysis with the modes of the undamped system. If
the damping is distributed in a certain way, or if normal mode
eross damping terms can be neglected, one obtains in such a normal
mode analysis uncoupled differential equatlons for the normail
- coordinates. Eqn. 4.2.1 can be easily transformed in such a way
that the factor [m] i1n the flrst term is replaced by the unit
matrix [I] . ?ith the definitions

noj—

i - [m] EE L W 2ie}

: 1 . 1
[e] - (=] ° [][m] TEs ] P

and omitting the bars over all symbols Eqn. 4.2.1 is obtained

in the form

{5} + <148} » [k]{} {1 N
~where f{e] and [k] are symmetrical matrices. . The normal modes
of the undamped system are obtalned from '

NI R B O N R A

(A] is the modal matrix with elements Aju , Where the latin
subscript refers to the element number and the greek subscript
. to the mode number. The modal matrix [A] can be multiplied
,be an afbitrary dlagonal matrix and the product would still
satisfy Eqn. 4.3.2. From the symmetry of [k] it follows that
both ‘[A]T [A] and [A] [x] [A] are diagonal matrices.
Selecting a suitable normalization for [A] ‘one can obtain

B D) -, s
21 0B - Bl s

1
2



- 32 <
From 4.3.3:
-1 '
- T . 4.3.5
] = [4] |
The inverse modal matrix equals the transposed modal matrix.

Equations 4.3.2 and 4.3.4 read in subseript notatilon .
: 2
v

A ) = ¥ L
Jv < kJi Aj, 4.3.6
CD% = XU 4-307

| i |
1s an element of the diagonallized stiffness matrix.
If all natural'fréquencies w, are different, the modal
' columns A v form a system of linearly Ilndependent wvectors
and the expansion theorem holds, for example

| {.v} = [*]{n} - or 7 1 -3 A "”'3‘.9_

The =, are the modél deflections.

Inserting. Eqn 4.3.8 in Egn. 4.3.1 and premultiplying by [A} T
one obtains \

[ERN G SRS IR R e Noly
- | [,A] T{f} o - k.10
Because of Eqn. 4.3.3 and 4.3.4 this reduces to - ' '

{?r'}+ [A]? [¢] [4] {n} + Ea?;l‘{n} ={¢} 4311
where the modal force. column {¢} is given by ‘ ." ‘
{¢}= 4] T{f} - op o 3 Ayt 4.3.12
"In general‘the modal equations 4.3.10 are coupled by the cross

damping terms. Only if [c] 1s of the form

] = a+ b [x] - | O 4.3.13



- 33 -

with arbitrary constants a and b is the triple product in
Eqn. 4.3.10, because of Eqns. 4.3.3 and 4.3, h,a diagonal matrix.
In this case one can write

DT -2

and Egn. 4.?.10 becomes

(3} » ¢ [0 M{} {) e

or n + 2., nu+wynv- oy ' 4.3.15

If Eqn. 4.3.12 1s not satisfied and 1f the dampihg is small, the
off-diagonal terms of the triple product [A.] [¢c] [A] s&re often
neglected and the uncoupled equations 4.3.15 are used. '

The modal frequency response function for the vth mode is
according to Ean. 4.3.15

(@) = it T 306

( - (&) 2t )

H;(“
Inserting {3} in Eqn. 4.3.9 and considering Eqn. 4. 3 12 one obtains

RO I OF T

" 80 that '% } 4.3.17

. The general admittance matrix for Eqn. 4.3.1 defined by .

| [H(w)] = [j‘ & 1] _+'1w[c]_ + [k]]-l

'is therefore obtained from the diagonal modal admittance
_matrix [H ( © ):| oy

o] - Mrw [+]*

4.3.19
or H“(m) = 3 A, H, m)A ‘
v .
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For a probabillistic description of the response of
discrete systems to random excitatlon, using real normal modes,
the cross correlations and cross power spectral densilties
must be expressed in terms of normal cbordinates. ‘We thén have
' to distinguish between-the following cross correlatlon
functionsi (As before, it is assumed that all mean values ape
zero)

Local force correlation ng(r) = E [fj*(t)fk(t+7i] 4,.3,20

Local deflection correlation Ryk(r) = E [yj (t)yk(t+fi] 4.3.21

Modal force correlation ﬁﬁn () = E [¢y(t) qib+rg 4.3.22

Modal deflection correlation an (r) = E [n:(t) ﬂ"‘(_t+‘!')] b4,3.23

In matrix notation fhese I} functions are written respectively

el L ] L el L e

"Physical forces and deflections are, of course, real quantities.
However, in the next section a description will be given which

" admits complex coordinates. For this reason. the preceding
‘definitions have been formulated in such a way that they also

" apply to complex force and deflection coordinates. _ :

‘ " Inserting eqn. 4.3.9 in eqn. 4.3, 21 one obtains with

eqn. 4.3.23

Rik = 22 A Rou Aa

o [#] - (X)) [T

This is a relation between modal and local e¢ross correlation
matrix. Eqn. 4.3.24 can be easlly inverted because of
[A] [A] [I]and one oabtalns

[ﬁ]::[aijﬁ][A] 4.3.25

u-alzu
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Siﬁilar relations exist’ for the force correlation matrices:

T

[Rf] - [%] [ff] [A] |  K.3.26
[R‘*’] m'[A*]T [Rf] [A] : u.é_.ev -

‘The cross spectra are obtalned from the cross correlations
by '

S':’j'k(“’) = —;—.,;I “i“"ﬁyk( ydr 4.3.28

with'the inverse

- -

Rﬁk(T) = -dI91WTS§k{w)dw : S 4.3.29

Therefore, the transformations M.B.Eh;énd 4,3.25 are also
valid for the cross spectra:

[sy]' [A*] [ s”} B [A]:T - .'1;.3.30"
AT e
‘ [sf]' 2[A*]T.[§] [A]T | - - LEE
TR e

~ The modal frequency response function 4.3.16 now relates
, the modal force and modal deflection spectra:

i

sty (@) = H,"(0)shy  (w)H, (w) 4.3.34

' a-relatioqiwhich 18 obtained from eqn. 4.2.5 by premultiplication
_ * -
~ with [A‘] and post multlplication with [A] and by considering
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“eqns. 4.3.19, 4.3.31 and 4.3.33.. Rather than manipulating the
complex admittance matrix [H («)] used in eqn. 4.2.5, the
normal mode analysis allows a very simple computation of res-
"tponse spectra from input spectra according to eqn. 4,3.,34,

L fIf the local force spectra are given and the local deflection

-8pectra are desired, it is necessary to first transform the
1ocal force spectra to modal force spectra with ‘the help of
eqn. 4.3.33, and then to transform the modal deflectlon spectra
to 1ocal deflection spectra with the help of egn. 4,3,30.

Finally the local cross correlation matrlix 1s calculated
from egn. 3.5.8 for T= O:

o .
R-‘Jj’k(o)= _[Sgk(“’)d“’ | - 4.3.35

_ ~od :

The dlagonal terms of thls matrix are the mean square deflec~ .

tions of the blade elements. It should be once morelpointed:

out that the real normal mode analysis 1s only applicable if

: elther the damping matrix has the formgiven in eqn. 4.,3,13

op if the cross damping terms in ‘the modal equations 4,3,11

' ‘ean be neglected.
4.4 Complex Normal Mode Analysis
~ For blade flap bending the conditlons for the valldity
" of the real normal mode analysis are not well satlsfied,

. since the damping matrix is nelther proportional to the mass
or stiffness matrix nor are the cross damplng terms: in the
modal representation negllgibly small. 'A rigoroue normal mode
_-anelyeis without neglecting terms 1s possible if one converts S
the m second order differential equations with respect to time
‘into 2m first order equatione equivalent. to Hamilton's
canonical equations. The new system of equations has 2m

f complex etgenvalues and 2n complex eigencolumns, 1f one.
-_excludee the case of multiple eigenvalues. It 1s further
‘assumed, that the system is etable,_though unstable systems
ican also be treated with this method if another. coordinate
transformation is performed, see Ref. (18) The inconvenience



-37-

of complex elgencolumns and complex normal coordinates in this -
method is in part compensated by the very simple form of the
f'requency response function.

With the transformatilon

B
i5t = i-i for deflections = 4.4.1
{ ‘
'" . {0} | i | . :
it} = s for forces - 4.4.2
et

equation 4.2.1 assumes the form

] 51 + [x]1 3¢ =%} 4b3
whefe
O] m , :
[M] = 'Efn'] 'Ec% 4. 4.h
W - [EL ] R
e G 1%) ’

The eigenvalue problem for eqn. 4.4.3 is defined by

BENEE -0 e

‘where ([A] 1s the modal matrix. Ean., 4.4.6 is the same as
eqn. 4.3,1 except for the sign. From the symmetry bf.the

matrices [M] and [K] one can derive the orthogonality.

" relations |

51 (K] [A]

Feed : | 4.4.7

i

Exd | , 4,4.8
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if all eigenvalues A are different the - complex elgenvectors
KJVI form a Bystem of linearly 1ndependent vectors and the
.uexpansion theorem.holds

EKJ:'"V > or {F} = [ﬁ]{'ﬂ -l l&..‘b,.g

Inserting this sum into eqn. 4 4.3 and- premultiplying by ﬂdr
one obtaine with eQne. b, 4,7 and 4.4.8:

f’[ﬂ]lﬂ? A LI T R SR
where . .{6};. [ﬁ]’rﬁ} ‘. or = EJKJ"._'_J-...- '. ’jh_l‘l.l.l

With

PR e

cnexcen'write the set of 2m uncoupled equationecﬂ.u;10 in the

form . o
Aat-Ladiet (7] []
or - - . %
ﬁv"kvﬁv " -a/”
»
Eqn. 4.4.13 has the modal frequency response function

1. | , 441k
(iw=Ay) ity
Formally all relations of section 4.3 are still valid if y .
;and n are replaced by ¥ and n and f ' and ®- are replaced by
- and & reepectively. While in section: h 3 the. stars on. 4]
”;were meaninglees since Eﬁ] wae real, the complex character -
of [A] must now ‘be pnoperly considered. '

H, (v) =
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| Given the local force spectra [S' (w)] ‘one first
transforms to modal force spectra by

- _-',_-"[sﬁ (w}] '=[ E;]-TI [si-.(w.)]_[ K] , . il.l,l..lﬁ

t‘hEn“:l;'d modal deflection Spectr"a' by

A N
_ F oy | .
or  §hy (w) = Syu' W) u.b.16

byliw=2y) fyliw=Ay)

and finally to local deflectlon spectra by
| o

Pl BT v

. The transformation of the physical spectral Syow)] _and
[S'*_,(w to.the values for the first order system sy (w)]
'a_ﬁd" S? (Nﬂ" are to be performed ln agreement with equations
4.4.1 and 4.4.2. :

Since s-‘gk(w) = E [YJ*(w)Yk(w)].
one obtains from eqns. 4,4.1 and 4.4.2:

_ - e [s"(w) ]iiu[slf-(w)j
| -i‘w;[sy(w)]:‘ [S”'(u)]‘[ o
_‘ . B o 5 0 o .
e - [

T e . o 4.4.19

[ | [
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If [Sgluﬂ]A is given as the result of the modal analysis,
it ‘18 easy to obtain [Sy(wi] from eqn. 4.4.18. 1In Appendix C
an algorithm is developed for the complex normal mode analysls
of randomly excited multi-degree of freedom systems.

- .If [S] is the stress-deflection matrix with matrix
element‘SLS.ok'( o, indicating the bending stress at blade
station k) the physical stress cross correlation matrix is

given by

[,R‘_’]: = [s] [R’"] [s*]Tl- | | u.n“.z..o
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5. Outline for Lifting Rotor Model Tests in Turbulent Flow
In the random blade flapping and blade flap bending

theories presented in Sections 3 and 4, it is assumed that the

random blade loads at the various blade stations are known,

so that the output random flapping angles or flap bending

'defiections'or moments can be computed. In the following,
two types of modelptests'ere outlined which have two different
‘relations to the theory. In the first and more sophieticated
“type of model tests, the test results are used to substantiate
:the theory. In the second less sophistlcated type of model
- tests the theory is requlred to interpret the test results,
In both types of model tests information is obtained about
the aerodynamlc blade loads when the model 1s operated in
a turbulent flow. :
5.1 Model Tests with Both Load and Load Response Measurements
In order to substantiate the theory by experilments,
1t is required to record on tape at a number of blade statlons
the aerodynamic blade loads together wlth flapping angle
(if flapping hinges are provided) and flap-bending strains.
The tape recordings must be of pufficient length to allow
"adequate random data processing, say 500 rotor revolutions.
'The pressure pick-ups must be fast responding and the slip
' rings'should not introduce excessive noise. .Probably it will
not be possible to install a sufficient number of pressure
‘pick-ups to reliably integrate the blade aerodynamic loads,
and it will be necessary to calculate the loads from the readings
of a few strateglcally located pick-ups, possibly Jjust from
.tworpiek-ups per blade statlion installed in the region of
maximum pressure at the upper and lower airfoll surface.
This system needs calibration 1n a flow of known fluctuations
of the flow direction and of known overall aerodynamlc pressures,
which in i1tself will present problems. 'In addition to the
model rotor instrumentation the turbulence characteristics
‘of ‘the inflow must be measured upstream of the model rotor,
for example with a number of crossed hot wire probes.
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These teste will require considerable preparation, but they
should be valuable in obtaining data on both the aerodynamic
loads and on the load responses of lifting rotors operatlng
in turbulent flow, thus making a substantiation of the theory
of Sections 3 and 4 possible,
5.2 Model Tests with Load Response Measurements Only

A much simpler test set-up 1s obtained, 1f the aero-
dynamic load measurements are omitted. In this case, only
flapping angles and flap-bending strains would be recorded
at a number of blade stations. The theory would then be used
in order to establish the random aerodynamic load characteristics
from the random response measurements. Same as in the previous
case, the turbulence characteristles of the inflow must be
measured upstream of the model rotor. These tests would not
be a check of the theory which has to be assumed as valid,
but the tests would be valuable in obtaining data on the random
serodynamic blade loads produced by the turbulent inflow.
Depending on the character of this turbulence 1t mlght be
possible to predict theoretically the rotor blade angle of
attack fluctuations and thereby the blade load fluctuations
from a glven turbqlenceispectrum of the inflow, Most likely,
however; the relation between inflow turbulence and the tur-
*'bulence-which the rotary wing feels will be a rather complex
one and may not be easlly tractable by a theoretical approach.

‘ At Ames Research Center there is avallable a 4-bladed

123ft;_diameter propeller which could be used as generator
for a turbulent flow by setting the two . blade pairs at largely
different incidence angles. Also available is a two bladed
see-saw rotor of 9 ft. dlameter which could be'operated in
the wake of the 4-bladed propeller.

A Minimum Instrumentation for the test 1s considered

as follows:

1. Flapping angle plck-up, probably best obtained with
a strain gauged flexure which is loaded -in blade
flapping.
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2, Two strain gauges near the blade root, one for each
blade, measuring flap-bending strain. Possibly more
flap-bending strain gauges along the blade radlus.

3. Blade azimuth indlcatoer.

4, Two crossed hot wire probes, located upstream of the
potor in the rotor plane with a lateral distance of
about .7 rotor diameters between each other.

The readings of items 1 to 4 must be tape recorded. In

addition, blade incldence and rotor shaft incidence must be

knowr.
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6.3

4l

Concluslonsg

The concepts for a theoretical and experimental study
of 1ifting rotor random loads and vibrations have been '
developed. Random iifting rotor loads occur not only during
operation in atmospheric turbulence but also in a qulet
atmosphere when there can be a self 1nduced turbulence of the
flow through the rotor plane as in vertical descent in the
vortex state, or as in transition from hovering to forward
flight. |

A survey of random process theory has shown that very
1ittle prior work has been done in the area of non atatlonary
random processes, in particular when the system parameters
are time varying. The only type of non statlonary random
processes which are presently analytically manageable are
modulated stationary random processes. Under the assumption
that the random processes assoclated with 1ifting rotor '
operatlion are of this type, 1t has been shown that up to an

advance ratic of # = .3 the effect of the time varlability
~ of the system parameters in blade flapping is quite small.

If confirmed by experimental hardware or simulator results,
this would greatly simplify 1ifting rotor random loads and
vibrations analyses except for very high advance ratlos.
A rather complete theory of random blade flap-bhending
has been presented under the usual assumptions of ‘stationary and’

'ergodic pbehaviour. While the theoretical concepis are avallable,

the numerical analysis 1s guite extensive., No previous work
exists which would indlcate the.validity of possible approxi-
mations like the neglect of cfoss damplng terms in the modal
representation, or the neglect of the cross correlations

between blade elements or blade modes, or the less drastic
neglect of the quad spectra between blade elements or blade
modes. A systematie computational and experimental approach

to these. important questions will: be required. It 1s reassuring,
however,. that a complete OroBs’ correlation analysis is. available
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in principle and may well be computationally tractable,
Experimental work with lifting rotor models 1s prapoued
to study the random -lcads and load responses when the model
is operating in a turbulent flow. With a rather sophisticated
rotor model instrumented for the recording of both aerodynamic )
blade loads and blade responses to these 1oads, the theory

could bé substantliated. However, valuable test results can

also be- expected from a simple rotor model instrumented
only  for the recording of flappling angles and flap-bending )

‘strains.  In such tests the theory would be required to -

interpret the test results with respect to random air loads
produced by operation of the model rotor in turbulent flow.
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Appendix A: Time Averaged Autocorrelation Function and
Assocliated Power Spectral Density of a

statlonary Random Process Modulated by a
Periodic Functilon
If y{t) is the product of a stationary random function
x(t}'and‘aneterministic-periodic function A{t) (modulated |
stationary random'process), then the random-process'obtained
by averaging the autocorrelation function

T/z
L R y{tsT)dt = ﬁ_y('r) A-1
-T’h

1s a stationary randﬁm pfocess‘and'has the‘measurﬁble single

frequency power spectral density, see Section 9.9.3 of Ref. (7).
1]

%Cw) = _‘! ﬁy(‘!‘)e'i“'"dr A-2

As A(t) is periodic, 1t can be expressed in Fourler series

_ ' .
At) = 30 o o'k
' ¥k =
Setting
y(t) = x(t) > ck"ik"‘",
K ==

one obtains

Ry(trte) = E[x(t1)x(t2) { f: c ,*woh}{ Z" .“"b'z}]

K e ==

= Rx(tz-t‘l) 2 Z RN e"’“‘“‘"’"ﬂ
' k 2= | == :
t1+t

Substitute t

.Ry'('r;t) = er(‘r)_' i : i oko’,m{eumul-k;g}

¥ == ' ==
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Whlle applying equation A-1, 1t 1s easy to verify that

L 3
w1 | etk L -
' [ _— A
fwo{k +1) —0 except for k = | = O
o W & K

H]

As | and k can take both positlve and negative values |-k
‘can take values 2k and -2k.
Therefore,

R {(r) = R_(7) 2 2 Juoltzk)% + cOERx(-r]
*

Applying equation A-2, one gets a measurable single frequency
power spectral density ‘

5@ = s, (we? + B o P s (wrka) + s w-ka)} a3
k #0 -

Another way of obtalning the same result 1s to multiply the

- double frequency spectrum correpond;ng_to the sample function
x(t)A(t) by s(w,~w ). This is shown in the following deriva-
tion. ' '

With

y(t) = x(t) Y o okt ,
k 00 -
‘set
Y (“ﬁ‘ = x(t1) N ~o lldh
@ K ==t
to obtaln
x * » ..
Y*(w.l) = cox*(a”) + Z cx [X (hl] -kt_do) + X (wfﬂswo)]

¥+ O



-50-
and
Y wy) = cgX(wp)v D o [ R @k a X wytk w,)]

-

ke+ O

The double frequency'spectrum is5 defined by

S (wy, wp) = E [Yf( wy ) ¥( wg)]

J
We now multiply this double frequency spectrum with G(tdp
o uh+ou
5( UE- w1)Sy( w1, &’2) = 8 0’2" 01)00 bx( 5 )
o ' W,-2K  + @
- 2 = o] 1
+ o0 Y ey al ey @8, T

'k * O

m . .
<+ | Z Ok 5( w2 w1)Sx( S

-]

k+#0

and obtain the same equation as A-3.

—w1):
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-,aAppendix B: Computation of Power Spectral Density for &

o Flapping Randomly Excited Blade n
Equation B-1 represents a general type of linear,

second order and non-homogeneous differentlal equation with

constant and periodic coefficlents, #{t) and (%)

representing respectively the non stationary random reSponse,

and the statlionary random input.
§+-{cl+a1sin(nubt-+61)}é + { e tassin(nagy +92)iﬂ
= {03+aasin(nny -+93)} a(t) B-1

(Selecting a time unit for which the rotor angular velocity

Nuwp = 1 and substituting ©, = 0, €, =%, 83=0, ¢y = c3= %,
ay = a, -E’ = 1, and ag = 7" in equation B-1, an approximate

blade flapping differential equaticn vélid up to about s= 0.3
advance ratio, is obtained. For detalls refer to Section 3 )
With the operator r representing the Fourier infegral tranq~
formation, let

CF(E) = - FB(w) .
f[{c-;|+a1sin(nau +6 )}ﬂ] = By(w)

‘F-[{ce-l-aggin(nuy +.92)}ﬁ] - Bz( w ) | and

F[:{§3+aasin(ﬂ wg +93_)}°'] = .133( w).

~ Apply the operator Ff to equation B-1 at frequencles w, and Wy

to yleld
2 % * * *
-w,” B (W) )+B, (w))+B, (@) = By (@)

and -W, B(ub)+B1( }+B (”b) = BB(“b)
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E[B*( o, )B( ue)]

' w, = w , as explained in Appendix A

Now, consider

It

along the line &
and set

8wy w)E [BCwpnC )] - 5 (o).

&

After some algebra one obtains
2

: o o : L a a.d _ ‘

fhio )2 Puze, Pre,? } Sg ()t { At wonu)® - 2 e nw)sin(e-6;)
.
8 . .
+ _%—}‘ga ( w-nw,) g
" 2 : 2

; a a.8," . a ‘

{9 (w+nu,)2 ' 12( w-+tnwo ) sin(8;-0,)+ —— } B (w+nwe)
a . :

= 03234:: (@) + --i—-{Sa (w-+nw )+Sa ( w—nu,)} : B-2

With @= ka, where k is a dlscrete variable with values k = 1,2,...
and w, a fixed step size, eqn. B-2 represents an infinite set
of difference equations for S (kab) which will be abbreviated
by‘Sk(aJ) Since S, (nb) (a:) and since from physical
condiderations Sk+n(aa)-+ 0 for 1arge X, the infinite set of
equations can be approximated by a finlte set.

Express equation B-2 in a symbolic form

A(k,k)sk(w)+A(.k—n,k)Sk_n( w )+A(k+n,k)S, (@) = R.H.S: B-3

Equation B-3 1s inverted for 5, ( @) values by a digital computer
program (19) which essentilally involves a matrix inversion
subroutine. Figures Ea-dshow numerical results for two stochastic
1nputs Sx (a)) Figures 2a and 2b with ay = a5 = .2 refer tor ' '
an advance ratio = 0.3 and a blade inertia number 1f~ L,

For this set of coefficients. the values A(k~n k) and’ A(k+n k).

are two order of magnitude smaller than A(k k) which explains‘A'
the fact that the résults: of the present alberithm do not

differ appreclably from those for the constant parameter system
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' obtained by omitting the periodic terms in egn. B-1. -The"
results obtained for the same set of stochastic inputs but )
.now with a = a, = 0.8 show a substantlalldifference,

Figures 2¢ and 2d,between the present method and the equivalent

constant parameter system, as expected It is to be noted

fthat the second. set of coefficients have no physical relevance

as the approximate blade flapping equation is valid up to

about p= 0.3 advance ratio and the blade inertia number

is generally less than 10 for helicoptefs.
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Appendix C: Discrete Element Algorithm for Complex Normal
' Mode Analysis of Multi Degree. of Freedom Stable
Systems Under Random Excitation
Before actually coming to the numerlcal analysis,. it
is mandatory to replace the continuum as an assemblage of 'm'
fdiscrete elements to obtain 'm' equations of dynamic equilibrium
in a standard form, equation 4.2.,1, and then, as discussed in
Section 4.4, convert these m equations into 2m first order
differential equations having 2m complex eigenvalues and 2m
complex modal columns. The discussion here 1s restricted '
to blade flap«bending random analysis with small advance ratio
though the present algorithm is applicable to any discrete
systems under random excitation.

The analysis of numerical problems comprises three

main phases:

1) the mass, damping and stiffness matrices

2) the eigenvalues and eigencolumns

3) the spectral density matrices and RMS deflection

- and stress values at element statlons., The numerical

‘operations are carried out in two passes - the first
two phases 1n the first run and the last one in the
gecond run.

The computer program, written in FORTRAN IV language
is based on some of the subroutines appearing elsewhere in
the literature (19, 20, 21, 22). It accepts as lnputs the
following information regarding the pattern of discretization
and other constants associated with the physical system.

1) - . number of elements

i1) Hubradius

111) boundary conditions at the hubjoint

iv) 11ft slope (5.7 per radian)

v) blade chord at midpoint of the element or element
station

vi) air density

vii) rotor speed in rad/sec

viii) gravitational constant
ix) x-ordinate of element stations
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x) flexured rigidity EI at element stations
x1) vertical load at element stations
In the present case, the mass and damping matrices
are diagonal matrices, hence they can be directly read into
‘the program. The damping terms at each element station can
also be calculated from the formula aci’ilg_(see equétion 4.1.1).
Depending upon,the initial condltions at the hubjoint solve for
MP Ma--' ------- 1amiei,2,-~~-——-6 menemmtumsu
4,1.6 and 4.1.8 by calling a matrix subroutine which computes ;
- the inverse and rank of a matrix and solves a set of simultaneous
equations according to Gauss-Jordan reduction priﬁciple.
Generate the matrix of Influence coeffliclents, wij, from the
recurrence relation 4.1.9. The stiffness matrix[#ij] is
obtained by 1nverting the matrix wi .
~ With [m] , [¢], and [k] matTices being generated in
the first operation, call for matrix subroutines to compute
1 -1

(=] [e) e [=] [

and finally eompute the elgenvalue matrix (see equation 3.6.8)

PEREDIERND

The 2m eigenvalues and 2m eigenvectors are calculated 1n the
following order:
1) . Generating the characteristic polynominal. The subroutine
'~ 1s based on the Leverrier-Faddev method (20 355}
according to which the coefficients p1,p2...p in the
characteristic polynominal

' -1 -2.
An""p1 xn “""pE ?‘n —a---.-..o-“pn = O
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are given by

W}’IEI’E

11)

111)

= (1/n)(trace [Gn] )
[?1]‘“"[‘}]
[on] - Lo ] {Coi] e ]

Calculation of roots of the characteristic polynominal:
This 1s effected by a subroutine of reference 20

which finds real and lmaginary parts of complex roots
and gives the reduced polynominal which in turn is
examined for real roots if any.

Solution of simultaneous linear equations for elgenvectors:
The complex modal columns or elgenvectors are obtained
by a simultaneous equation subroutine (19, 22).
Presuming that the physlcal cross spectra [S (ulﬂ

of the excliting system are known, the RMS deflectlon and stress
values are computed in the following sequence:

1)

3)

4)

Obtain the local force cross spectra from equation 4,h.19
and then transform it to the modal force cross spectra
according to the relation 4#.4.15.

From equation 4.4.16 compute the modal deflection cross
spectra which when substituted in equation 4.4.17

glves the'local deflection cross spectra.

Obtain the physical deflection cross spectra from
equation 4.4.18.

Using any quadrature subroutine calculate the physical
deflection and stress space cross correlation ‘

o] - [ [#e)] e

@] = [s] [0 [2]

the diagonal terms of which givé the corresponding RMS
values at element stations (refer to equatilons 4.4.20).



